Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 8): 217-223, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37565839

RESUMO

Members of the GCN5-related N-acetyltransferase (GNAT) family are found in all domains of life and are involved in processes ranging from protein synthesis and gene expression to detoxification and virulence. Due to the variety of their macromolecular targets, GNATs are a highly diverse family of proteins. Currently, 3D structures of only a small number of GNAT representatives are available and thus the family remains poorly characterized. Here, the crystal structure of the guanidine riboswitch-associated GNAT from Lactobacillus curiae (LcGNAT) that acetylates canavanine, a structural analogue of arginine with antimetabolite properties, is reported. LcGNAT shares the conserved fold of the members of the GNAT superfamily, but does not contain an N-terminal ß0 strand and instead contains a C-terminal ß7 strand. Its P-loop, which coordinates the pyrophosphate moiety of the acetyl-coenzyme A cosubstrate, is degenerated. These features are shared with its closest homologues in the polyamine acetyltransferase subclass. Site-directed mutagenesis revealed a central role of the conserved residue Tyr142 in catalysis, as well as the semi-conserved Tyr97 and Glu92, suggesting that despite its individual substrate specificity LcGNAT performs the classical reaction mechanism of this family.


Assuntos
Acetiltransferases , Acetiltransferases/química , Cristalografia por Raios X
2.
Nucleic Acids Res ; 51(5): 2001-2010, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36626933

RESUMO

Error-free translation of the genetic code into proteins is vitally important for all organisms. Therefore, it is crucial that the correct amino acids are loaded onto their corresponding tRNAs. This process is highly challenging when aminoacyl-tRNA-synthetases encounter structural analogues to the native substrate like the arginine antimetabolite canavanine. To circumvent deleterious incorporation due to tRNA mischarging, editing mechanisms have evolved. However, only for half of the tRNA synthetases, editing activity is known and only few specific standalone editing proteins have been described. Understanding the diverse mechanisms resulting in error-free protein synthesis is of great importance. Here, we report the discovery of a protein that is upregulated upon canavanine stimulation in bacteria that live associated with canavanine-producing plants. We demonstrate that it acts as standalone editing protein specifically deacylating canavanylated tRNAArg. We therefore propose canavanyl-tRNAArgdeacylase (CtdA) as systematic name. Knockout strains show severe growth defects in canavanine-containing media and incorporate high amounts of canavanine into the proteome. CtdA is frequently found under control of guanidine riboswitches, revealing a functional connection of canavanine and guanidine metabolisms. Our results are the first to show editing activity towards mischarged tRNAArg and add to the puzzle of how faithful translation is ensured in nature.


Error-free translation is one of the most vital processes in all living organisms, but can be substantially challenged by compounds that mimic amino acids. Canavanine, or 5-oxa-arginine, is used as an antimetabolite by higher plants that is toxic due to its incorporation into proteins. We report the discovery of a standalone editing protein specifically deacylating canavanylated tRNAArg that enables the legume rhizosphere inhabitant Pseudomonas canavaninivorans to prevent canavanine mis-incorporation into its proteome. Our results are the first to show editing activity towards mischarged tRNAArg and add to the puzzle of how faithful translation is ensured in nature.


Assuntos
Aminoacil-tRNA Sintetases , Canavanina , RNA de Transferência de Arginina , Aminoacil-tRNA Sintetases/metabolismo , Canavanina/metabolismo , Proteínas
3.
RNA Biol ; 20(1): 10-19, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548032

RESUMO

Riboswitches are regulatory RNAs that specifically bind a small molecule or ion. Like metabolite-binding proteins, riboswitches can evolve new ligand specificities, and some examples of this phenomenon have been validated. As part of work based on comparative genomics to discover novel riboswitches, we encountered a candidate riboswitch with striking similarities to the recently identified guanidine-IV riboswitch. This candidate riboswitch, the Gd4v motif, is predicted in four distinct bacterial phyla, thus almost as widespread as the guanidine-IV riboswitch. Bioinformatic and experimental analysis suggest that the Gd4v motif is a riboswitch that binds a ligand other than guanidine. It is found associated with gene classes that differ from genes regulated by confirmed guanidine riboswitches. In inline-probing assays, we showed that free guanidine binds only weakly to one of the tested sequences of the variant. Further tested compounds did not show binding, attenuation of transcription termination, or activation of a genetic reporter construct. We characterized an N-acetyltransferase frequently associated with the Gd4v motif and compared its substrate preference to an N-acetyltransferase that occurs under control of guanidine-IV riboswitches. The substrates of this Gd4v-motif-associated enzyme did not show activity for Gd4v RNA binding or transcription termination. Hence, the ligand of the candidate riboswitch motif remains unidentified. The variant RNA motif is predominantly found in gut metagenome sequences, hinting at a ligand that is highly relevant in this environment. This finding is a first step to determining the identity of this unknown ligand, and understanding how guanidine-IV-riboswitch-like structures can evolve to bind different ligands.


Assuntos
Riboswitch , Guanidina/química , Guanidina/metabolismo , Conformação de Ácido Nucleico , Ligantes , Guanidinas/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo
4.
Sci Rep ; 12(1): 22088, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543883

RESUMO

Guanidino acids such as taurocyamine, guanidinobutyrate, guanidinopropionate, and guanidinoacetate have been detected in humans. However, except for guanidionacetate, which is a precursor of creatine, their metabolism and potential functions remain poorly understood. Agmatine has received considerable attention as a potential neurotransmitter and the human enzyme so far annotated as agmatinase (AGMAT) has been proposed as an important modulator of agmatine levels. However, conclusive evidence for the assigned enzymatic activity is lacking. Here we show that AGMAT hydrolyzed a range of linear guanidino acids but was virtually inactive with agmatine. Structural modelling and direct biochemical assays indicated that two naturally occurring variants differ in their substrate preferences. A negatively charged group in the substrate at the end opposing the guanidine moiety was essential for efficient catalysis, explaining why agmatine was not hydrolyzed. We suggest to rename AGMAT as guanidino acid hydrolase (GDAH). Additionally, we demonstrate that the GDAH substrates taurocyamine, guanidinobutyrate and guanidinopropionate were produced by human glycine amidinotransferase (GATM). The presented findings show for the first time an enzymatic activity for GDAH/AGMAT. Since agmatine has frequently been proposed as an endogenous neurotransmitter, the current findings clarify important aspects of the metabolism of agmatine and guanidino acid derivatives in humans.


Assuntos
Guanidinas , Ureo-Hidrolases , Humanos , Agmatina/metabolismo , Guanidinas/metabolismo , Hidrólise , Ureo-Hidrolases/metabolismo
5.
RSC Chem Biol ; 3(10): 1240-1250, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36320885

RESUMO

Canavanine, the δ-oxa-analogue of arginine, is produced as one of the main nitrogen storage compounds in legume seeds and has repellent properties. Its toxicity originates from incorporation into proteins as well as arginase-mediated hydrolysis to canaline that forms stable oximes with carbonyls. So far no pathway or enzyme has been identified acting specifically on canavanine. Here we report the characterization of a novel PLP-dependent enzyme, canavanine-γ-lyase, that catalyzes the elimination of hydroxyguanidine from canavanine to subsequently yield homoserine. Homoserine-dehydrogenase, aspartate-semialdehyde-dehydrogenase and ammonium-aspartate-lyase activities are also induced for facilitating canavanine utilization. We demonstrate that this novel pathway is found in certain Pseudomonas species and the Rhizobiales symbionts of legumes. The findings broaden the diverse reactions that the versatile class of PLP-dependent enzymes is able to catalyze. Since canavanine utilization is found prominently in root-associated bacteria, it could have important implications for the establishment and maintenance of the legume rhizosphere.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35072599

RESUMO

A novel canavanine-degrading bacterium, strain HB002T, was isolated from rhizosphere soil of a catch crop field collected from the island of Reichenau in Konstanz, Germany, and characterized by using polyphasic taxonomy. The facultative aerobe, rod-shaped, Gram-stain-negative bacterium was oxidase- and catalase-positive. The isolate was able to grow on canavanine as a sole carbon and nitrogen source. Results of phylogenetic analysis based on 16S rRNA gene sequences revealed highest similarities to Pseudomonas bijieensis (L22-9T, 99.93 %), Pseudomonas brassicacearum subsp. neoaurantiaca (ATCC 49054T, 99.76 %), Pseudomonas brassicacearum subsp. brassicacearum (DBK 11T, 99.63 %), Pseudomonas thivervalensis (DSM 13194T, 99.51 %), Pseudomonas kilonensis (DSM 13647T, 99.39 %) and Pseudomonas corrugata (ATCC29736T, 99.39 %). Marker gene analysis placed the strain in the intrageneric group of Pseudomonas fluorescens, subgroup P. corrugata. In silico DNA-DNA hybridization and average nucleotide identity values were both under the recommended thresholds for species delineation. The predominant fatty acids of strain HB002T were C16 : 0, C17 : 0 cyclo ω7c and C18 : 1 ω7c. The major respiratory quinone was Q9, followed by Q8 and minor components of Q7 and Q10. Results from the phenotypic characterization showd the strain's inability to hydrolyse gelatin and to assimilate N-acetyl glucosamide and a positive enzymatic activity of acid phosphatase and naphthol-AS-BI phosphohydrolase that distinguish this strain from closely related type strains. Taken together, these results show that strain HB002T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas canavaninivorans sp. nov. is proposed. The type strain is HB002T (=DSM 112525T=LMG 32336T).


Assuntos
Filogenia , Pseudomonas/classificação , Rizosfera , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Fosfolipídeos/química , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Mol Microbiol ; 116(1): 200-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33590553

RESUMO

Guanidine is sensed by at least four different classes of riboswitches that are widespread in bacteria. However, only very few insights into physiological roles of guanidine exist. Genes predominantly regulated by guanidine riboswitches are Gdx transporters exporting the compound from the bacterial cell. In addition, urea/guanidine carboxylases and associated hydrolases and ABC transporters are often found combined in guanidine-inducible operons. We noted that the associated ABC transporters are configured to function as importers, challenging the current view that riboswitches solely control the detoxification of guanidine in bacteria. We demonstrate that the carboxylase pathway enables utilization of guanidine as sole nitrogen source. We isolated three enterobacteria (Raoultella terrigena, Klebsiella michiganensis, and Erwinia rhapontici) that utilize guanidine efficiently as N-source. Proteome analyses show that the expression of a carboxylase, associated hydrolases and transport genes is strongly induced by guanidine. Finding two urea/guanidine carboxylase enzymes in E. rhapontici, we demonstrate that the riboswitch-controlled carboxylase displays specificity toward guanidine, whereas the other enzyme prefers urea. We characterize the distribution of riboswitch-associated carboxylases and Gdx exporters in bacterial habitats by analyzing available metagenome data. The findings represent a paradigm shift from riboswitch-controlled detoxification of guanidine to the uptake and assimilation of this enigmatic nitrogen-rich compound.


Assuntos
Enterobacteriaceae/metabolismo , Erwinia/metabolismo , Guanidina/metabolismo , Klebsiella/metabolismo , Riboswitch/genética , Carbono-Nitrogênio Ligases/genética , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica/genética , Hidrolases/metabolismo , Proteínas de Membrana Transportadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...